La programación estructurada es un estilo con el cual el se busca que el programador elabore programas sencillos y fáciles de entender. Para ello, la programación estructurada hace uso de tres estructuras básicas de control. Un problema se puede dividir en acciones elementales o instrucciones, usando un número limitado de estructuras de control (básicas) y sus combinaciones que pueden servir para resolver dicho problema.
Las Estructuras Básicas pueden ser:
Secuenciales: cuando una instrucción del programa sigue a otra.
Selección o decisión: acciones en las que la ejecución de alguna dependerá de que se cumplan una o varias condiciones.
Repetición, Iteración: cuando un proceso se repite en tanto cierta condición sea establecida para finalizar ese proceso.
ESTRUCTURAS BÁSICAS.
Ventajas de la Programación Estructurada
Con la programación estructurada, elaborar programas de computadora sigue siendo una labor que demanda esfuerzo, creatividad, habilidad y cuidado. Sin embargo, con este nuevo estilo podemos obtener las siguientes ventajas:
1. Los programas son más fáciles de entender. Un programa estructurado puede ser leído en secuencia, de arriba hacia abajo, sin necesidad de estar saltando de un sitio a otro en la lógica, lo cual es típico de otros estilos de programación.
2. Se logra una reducción del esfuerzo en las pruebas. El seguimiento de las fallas o depuración se facilita debido a la lógica más visible, de tal forma que los errores se pueden detectar y corregir más fácilmente.
3. Se crean programas más sencillos y más rápidos.
- ESTRUCTURA SECUENCIAL.
Se caracteriza porque una acción se ejecuta detrás de otra. El flujo del programa coincide con el orden físico en el que se han ido poniendo las instrucciones. Dentro de este tipo podemos encontrar operaciones de inicio/fin, inicialización de variables, operaciones de asignación, cálculo, sumarización, etc. Este tipo de estructura se basa en las 5 fases de que consta todo algoritmo o programa:
Definición de variables (Declaración)
Inicialización de variables.
Lectura de datos
Cálculo
Salida
Ejemplo .
Se desea encontrar la longitud y el área de un círculo de radio 5.
Solución.
El objetivo del ejercicio es encontrar la longitud y el área de un círculo con un radio conocido y de valor 5. Las salidas serán entonces la longitud y el área. (Fase 5 del algoritmo) Sabemos que la longitud de un círculo viene dada por la fórmula 2 * pi * radio y que el área viene dada por pi * radio al cuadrado. (Fase 4 del algoritmo) Si definimos las variables como: (fase 1 del algoritmo)
L = Longitud, A = área, R = radio, pi = 3.1416, hagamos el algoritmo:
Inicio
Pi ¬ 3.1416 (definición de un valor constante)
R ¬ 5 (radio constante ya que es conocido su valor)
A ¬ pi * R ^ ² (asignación del valor del área)
L ¬ 2 * pi * R (asignación del valor de la longitud)
Escribir (A, L) (salida del algoritmo)
Fin
Representación en Diagrama de Flujo para el ejemplo:
- ESTRUCTURAS SELECTIVAS
Estas estructuras se identifican porque en la fase de solución del problema existe algún punto en el cual es necesario establecer una pregunta, para decidir si ciertas acciones deben realizarse o no.
Las condiciones se especifican usando expresiones lógicas. La representación de una estructura selectiva se hace con palabras en pseudocódigo (if - then - else o en español si - entonces - sino) y en flujograma con una figura geométrica en forma de rombo.
Las estructuras selectivas o alternativas se clasifican en:
a)Simples
b)Dobles
c)Compuestas
d) Múltiples
b)Dobles
c)Compuestas
d) Múltiples
- SIMPLES.
Se identifican porque están compuestos únicamente de una condición. La estructura si - entonces evalúa la condición y en tal caso:
Si la condición es verdadera, entonces ejecuta la acción Si (o acciones si son varias).
Si la condición es falsa, entonces no se hace nada.
Si la condición es falsa, entonces no se hace nada.
Español Inglés
Si <condición> If <condición>
Entonces then
<acción Si> <acción Si>
fin_si endif
Si <condición> If <condición>
Entonces then
<acción Si> <acción Si>
fin_si endif
Ejemplo .
Construir un algoritmo tal, que dado como dato la calificación de un alumno en un examen, escriba "Aprobado" en caso que esa calificación fuese mayor que 8.
Salidas:mensaje de aprobado si se cumple la condición.
Entradas: calificación
Construir un algoritmo tal, que dado como dato la calificación de un alumno en un examen, escriba "Aprobado" en caso que esa calificación fuese mayor que 8.
Salidas:mensaje de aprobado si se cumple la condición.
Entradas: calificación
Datos adicionales: un alumno aprueba si la calificación es mayor que 8
Variables: Cal = calificaciónAlgoritmo:Inicio
Leer (cal)
Si cal > 8 entonces
Escribir ("aprobado")
Fin_si
Fin
Leer (cal)
Si cal > 8 entonces
Escribir ("aprobado")
Fin_si
Fin
- DOBLES
Son estructuras lógicas que permiten controlar la ejecución de varias acciones y se utilizan cuando se tienen dos opciones de acción, por la naturaleza de estas se debe ejecutar una o la otra, pero no ambas a la vez, es decir, son mutuamente excluyentes.
Representación pseudocodificada.
Español Inglés
Si <condición> entonces If <condición> then
<acción S1> <acción S1>
sino else
<acción S2> <acción S2>
Fin_Si End_if
Si <condición> entonces If <condición> then
<acción S1> <acción S1>
sino else
<acción S2> <acción S2>
Fin_Si End_if
Entonces, si una condición C es verdadera, se ejecuta la acción S1 y si es falsa, se ejecuta la acción S2.
Ejemplo 1
Dado como dato la calificación de un alumno en un examen, escriba "aprobado" si su calificación es mayor que 8 y "Reprobado" en caso contrario. Algoritmo: Inicio
Leer (cal)
Si cal > 8 entonces
Escribir ("aprobado")
Sino
Escribir ("reprobado")
Fin_si
Fin
Leer (cal)
Si cal > 8 entonces
Escribir ("aprobado")
Sino
Escribir ("reprobado")
Fin_si
Fin
- COMPUESTAS
En la solución de problemas encontramos numerosos casos en los que luego de tomar una decisión y marcar el camino correspondiente a seguir, es necesario tomar otra decisión. Dicho proceso puede repetirse numerosas veces. En aquellos problemas en donde un bloque condicional incluye otro bloque condicional se dice que un bloque está anidado dentro del otro.
Ejemplo 1.
Determinar la cantidad de dinero que recibirá un trabajador por concepto de las horas extras trabajadas en una empresa, sabiendo que cuando las horas de trabajo exceden de 40, el resto se consideran horas extras y que éstas se pagan al doble de una hora normal cuando no exceden de 8; si las horas extras exceden de 8 se pagan las primeras 8 al doble de lo que se paga por una hora normal y el resto al triple.
Determinar la cantidad de dinero que recibirá un trabajador por concepto de las horas extras trabajadas en una empresa, sabiendo que cuando las horas de trabajo exceden de 40, el resto se consideran horas extras y que éstas se pagan al doble de una hora normal cuando no exceden de 8; si las horas extras exceden de 8 se pagan las primeras 8 al doble de lo que se paga por una hora normal y el resto al triple.
Solución.
Lo primero que hay que determinar es si el trabajador trabajó horas extras o no. Encontrar las horas extras de la siguiente forma:
Horas extras = horas trabajadas - 40
En caso que sí trabajó horas extras:
Si horas extras > 8 entonces a horas extras excedentes de 8 = horas extras -8 y pago por horas extras = pago por hora normal * 2 * 8 + pago por hora normal * 3 * horas extras excedentes de 8
De otra forma (solo horas al doble) pago por horas extras = pago por hora normal * 2 * horas extras.
Finalmente, pago total que recibirá el trabajador será:
Pago = pago * hora normal * 40 + pago por horas extras.
Si no trabajó horas extras tendremos:
Pago = pago por hora normal * horas trabajadas.
Datos de salida: Pago.
Datos de entrada: número de horas trabajadas y pago por hora normal.
Definición de variables:
ht = horas trabajadas het = horas extras que exceden de 8
ph = pago por hora normal phe = pago por horas extras
he = horas extras pt = pago que recibe el trabajador
Horas extras = horas trabajadas - 40
En caso que sí trabajó horas extras:
Si horas extras > 8 entonces a horas extras excedentes de 8 = horas extras -8 y pago por horas extras = pago por hora normal * 2 * 8 + pago por hora normal * 3 * horas extras excedentes de 8
De otra forma (solo horas al doble) pago por horas extras = pago por hora normal * 2 * horas extras.
Finalmente, pago total que recibirá el trabajador será:
Pago = pago * hora normal * 40 + pago por horas extras.
Si no trabajó horas extras tendremos:
Pago = pago por hora normal * horas trabajadas.
Datos de salida: Pago.
Datos de entrada: número de horas trabajadas y pago por hora normal.
Definición de variables:
ht = horas trabajadas het = horas extras que exceden de 8
ph = pago por hora normal phe = pago por horas extras
he = horas extras pt = pago que recibe el trabajador
Algoritmo:
Inicio
Leer (ht, ph)
Si ht >40 entonces
He ¬ ht - 40
Si he > 8 entonces
Het ¬he - 8
Phe ¬ph * 2 * 8 + ph * 3 * het
Sino
Phe ¬ ph * 2 * he
Fin_si
Pt ¬ph * 40 + phe
Sino
Pt ¬ ph * ht
Fin_si
Escribir (pt)
Leer (ht, ph)
Si ht >40 entonces
He ¬ ht - 40
Si he > 8 entonces
Het ¬he - 8
Phe ¬ph * 2 * 8 + ph * 3 * het
Sino
Phe ¬ ph * 2 * he
Fin_si
Pt ¬ph * 40 + phe
Sino
Pt ¬ ph * ht
Fin_si
Escribir (pt)
Fin
- MULTIPLES
Con frecuencia es necesario que existan más de dos elecciones posibles. Este problema se podría resolver por estructuras selectivas simples o dobles, anidadas o en cascada, pero si el número de alternativas es grande puede plantear serios problemas de escritura y de legibilidad.
Usando la estructura de decisión múltiple se evaluará una expresión que podrá tomar n valores distintos, 1, 2 , 3, ....,n y según que elija uno de estos valores en la condición, se realizará una de las n acciones o lo que es igual, el flujo del algoritmo seguirá sólo un determinado camino entre los n posibles.
Esta estructura se representa por un selector el cual si toma el valor 1 ejecutará la acción 1, si toma el valor 2 ejecutará la acción 2, si toma el valor N realizará la acción N.
Ejemplo 1:
Diseñar un algoritmo tal que dados como datos dos variables de tipo entero, obtenga el resultado de la siguiente función:
- REPETITIVAS E ITINERATIVAS
Son operaciones que se deben ejecutar un número repetido de veces. El conjunto de instrucciones que se ejecuta repetidamente cierto número de veces, se llama Ciclo, Bucle o Lazo.
Iteración es cada una de las diferentes pasadas o ejecuciones de todas las instrucciones contenidas en el bucle.
Iteración es cada una de las diferentes pasadas o ejecuciones de todas las instrucciones contenidas en el bucle.
Fases de un Programa Cíclico :
1. Entrada de datos e instrucciones previas
2. Lazo o bucle
3. Instrucciones finales o resto del proceso
4. Salida de resultado
1. Entrada de datos e instrucciones previas
2. Lazo o bucle
3. Instrucciones finales o resto del proceso
4. Salida de resultado
Ejemplo de bucle infinito:
En el flujograma anterior, observa que la flecha que se regresa hacia arriba nos está indicando que hay que volver a evaluar la expresión. En ese caso como el bucle es infinito, no se tiene una condición para terminar y se estará haciendo siempre. En el siguiente ejemplo, ya se agregó una condición, la cual nos permitirá finalizar la ejecución del bucle en el caso en que la condición se cumpla.
Ejemplo de bucle finito:
Bibliografía:
http://www.mailxmail.com/curso-aprende-programar/tipos-estructuras-programacion-estructuras-basicas-secuencial
http://www.mailxmail.com/curso-aprende-programar/tipos-estructuras-selectivas-estructura-simple
http://www.mailxmail.com/curso-aprende-programar/estructura-seleccion-doble
http://www.mailxmail.com/curso-aprende-programar/estructuras-selectivas-compuestas
http://www.mailxmail.com/curso-aprende-programar/estructura-selectiva-multiple
http://www.mailxmail.com/curso-aprende-programar/estructuras-repetitivas-iterativas
http://dcb.fi-c.unam.mx/users/alejandromra/Secuencial.pdf
http://webdelprofesor.ula.ve/cidiat/hjegat/materias/programacion/fortran.pdf
http://www.iqcelaya.itc.mx/~vicente/Programacion/ProgEstruct.pdf











No hay comentarios:
Publicar un comentario